RESEARCH PUBLICATIONS

 ​Computational Methods for a Class of singular Perturbation Problems: Numerical Treatment for a Class of singular Perturbation Problems, Published by LAP LAMBERT Academic Publishing 2012-09-05, 2012. ISBN 10: 3659218596 ISBN 13: 9783659218590

Book Published:

01

P. Chakravarthy, K. Phaneendra, Y. N. ReddyA Seventh order numerical method for singular perturbation problems, Applied Mathematics and Computation, 186, 860-871, 2007, ELSEVIER. Science Citation Indexed, Impact factor: 4.091. https://doi.org/10.1016/j.amc.2006.08.022

02

P. Pramod Chakravarthy, K. Phaneendra and Y. N. Reddy. A Fifth order numerical method for singular perturbation problems, Journal of Applied Mathematics and Informatics, Vol. 26, 2008, No. 3-4, pp. 689-706. SCOPUS Indexed

03

P. Pramod Chakravarthy, K. Phaneendra and Y. N. Reddy. Fifth order numerical method singularly perturbed differential-difference equations with negative shift, Journal of Applied Mathematics and Informatics, Vol. 27, No. 1-2, pp. 441-452, 2009. SCOPUS Indexed

04

K. Phaneendra, P. Chakravarthy, Y. N. Reddy A fitted Numerov method for singular perturbation problems exhibiting two layers, Applied Mathematics & Information Sciences, An International Journal, 4(3), 341-352, 2010, Dixie W Publishing, Corporation, U. S. A. SCOPUS Indexed

05

K. Phaneendra, P. Chakravarthy, Y. N. Reddy, Method of reduction for singularly perturbed boundary value problems with mixed boundary conditions, Proceedings of International Conference on Challenges and applications of Mathematics in Science and Technology, National Institute of Technology, Rourkela, MACMILLAN Advanced Research Series, ISBN 10: 0230-32875-X, Jan 11-13, 2010, pp. 775-784.

06

Kolloju Phaneendra, Y.N. Reddy, GBSL Soujanya. Seventh order numerical method singularly perturbed differential-difference equations with negative shift, Nonlinear Analysis: Modelling and Control, Vol. 16, No. 2, 206-219, 2011. Science Citation Index Expanded, Impact factor: 3.257

07

Kolloju Phaneendra, YN Reddy, GBSL Soujanya, Non-Iterative integration method for singular perturbation problems exhibiting internal and twin boundary layers, International Journal of Applied Mathematics and Computation, Vol. 3(1), pp. 9-20, 2011. Peer reviewed

08

K. Phaneendra, Y. N. Reddy, GBSL. Soujanya, Fourth order finite difference method singularly perturbed two-point singular boundary value problems, International J. of Math. Sci. & Engg. Appls., Vol. 5, No. II , pp. 441-452, 2011. Peer reviewed

09

GBSL Soujanya, Y.N. Reddy, Kolloju Phaneendra: A Fitted Galerkin Method for Singularly Perturbed Differential Equations with Layer Behaviour, International Journal of Applied Science and Engineering, 9 (3), 195-206, 2011. SCOPUS Indexed

10

K. Phaneendra, Y. N. Reddy, GBSL. Soujanya, Numerical Solution of Singular Perturbation Problems via Deviating Argument and Exponential Fitting, American Journal of Computational and Applied Mathematics, 2(2), 49-54, 2012. SCOPUS Indexed

11

K. Phaneendra, Y. N. Reddy, and GBSL. Soujanya Asymptotic – Numerical method for Third-Order Singular Perturbation Problems, International Journal of Applied Science and Engineering, 10(3), 241-248, 2012. SCOPUS Indexed

12

K. Phaneendra, Y. N. Reddy, E. Siva Prasad, Numerical treatment of singularly perturbed singular two point boundary value problems using non polynomial spline in optimal control problems, International Review of Automatic Control, Vol. 5, No. 5, 646- 651,2012. SCOPUS Indexed

13

Phaneendra. K, Reddy, Y.N., Soujanya, GBSL, Numerical Integration Method for Singularly Perturbed Delay Differential Equations, International Journal of Applied Science and Engineering, 10(3), 249-261, 2012. SCOPUS Indexed

14

. K. Phaneendra, Y.N. Reddy, GBSL. Soujanya Fitted Sixth-Order Tridiagonal Finite Difference Method For Singular Perturbation Problems, International eJournal of Mathematics and Engineering 147 (2012) 1338 – 1351. Peer reviewed

15

K. Phaneendra, Y.N. Reddy and Hari Shankar Prasad, Fitted Van Veldhuizen Finite Difference Method For Singular Perturbation Problems With Layer Behaviour, International eJournal of Mathematics and Engineering 153 (2012) 1399 - 1410. Peer reviewed

16

Madhulatha, Reddy, Y.N., Phaneendra. K*, Computational Method for Singularly Perturbed Two-Point Boundary Value Problems with One Boundary Layer, European Journal of Scientific Research, Vol. 98, No. 2, pp. 227-233, 2013. SCOPUS Indexed

17

K. Phaneendra, GBSL. Soujanya, Y. N. Reddy, Numerical integration method for singular perturbation delay differential equations with layer or oscillatory behaviour, Applied and Computational Mathematics, Vol.12, No. 2, pp.211-221, 2013. Science Citation Index Expanded. Impact factor: 3.051

18

K. Madhu Latha, , K. Phaneendra* and Y. N. Reddy, Numerical Integration with Exponential Fitting Factor for Singularly Perturbed Two Point Boundary Value Problems, British Journal of Mathematics & Computer Science, Vol. 3, No. 3, pp. 397- 414, 2013. Peer reviewed

19

GBSL, Soujanya, K. Phaneendra* and Y. N. Reddy, An Exponentially Fitted Non Symmetric Finite Difference Method for Singular Perturbation Problems, WSEAS Transactions on Mathematics, Vol. 12, Issue 7, pp. 767-776, 2013. SCOPUS Indexed

20

K. Phaneendra, K. Madhulatha, Y.N. Reddy, Integration Technique for Singularly Perturbed Delay Differential Equations, International Journal of Scientific and Industrial Research, Vol. 4, Issue 10,pp. 68-72, 2013. Peer reviewed

21

GBSL, Soujanya, K. Phaneendra* and Y. N. Reddy, Numerical Solution of Singular Perturbation Problems Exhibiting Dual Layers, International Journal of Advances in Engineering Sciences and Applied Mathematics-Springer, DOI 10.1007/s12572-013- 0095-1, 2013, Volume 5, Issue 4, pp 250–257. SCOPUS Indexed

22

D. Kumara Swamy, A. Benerji Babu, Y.N. Reddy, K. Phaneendra*, Integration Technique for Singularly Perturbed Delay Differential Equations, International Journal of Scientific & Engineering Research, Volume 4, Issue 10, 2013, 68-72.

23

K. Phaneendra, GBSL. Soujanya, Y. N. Reddy, Numerical Solution of Second Order Singularly Perturbed Differential– Difference Equations with Negative Shift, International Journal of Nonlinear Science, Vol.18, No.3, pp.200-209, 2014. SCOPUS Indexed

24

K. Phaneendra, K. Madhulatha, Y.N. Reddy, Special Finite Difference Method for Singular Perturbation Problems with One-End Boundary Layer, Mathematical and Computational Applications-An International Journal- Vol. 19, No. 3, pp. 208-217, 2014. SCOPUS Indexed

25

D. Kumara Swamy, K. Phaneendra*, A. Benerji Babu, Y.N. Reddy, Computational method for Singularly Perturbed Delay Differential Equations with Twin Layers or Oscillatory Behaviour, Ain Shams Engineering Journal, Vol. 6, pp. 391-398, 2015. Science Citation Index Expanded. Impact factor: 3.180

26

K. Phaneendra, S. Rakmaiah, M. Chenna Krishna Reddy, Numerical treatment of singular perturbation problems exhibiting dual layers, Ain Shams Engineering Journal, Vol. 6, pp. 1121-1127, 2015. Science Citation Index Expanded. Impact factor: 3.180

27

GBSL. Soujanya, K. Phaneendra*, Numerical integration method for singularsingularly perturbed two-point boundary value problems, Procedia Engineering, Vol. 127, pp. 545-552, 2015. SCOPUS Indexed

28

K. Phaneendra, S. Rakmaiah, M. Chenna Krishna Reddy, Computational method for singularly perturbed boundary value problems with dual boundary layer, Procedia Engineering, Vol. 127, pp. 370-376, 2015. SCOPUS Indexed

29

D. Kumara Swamy, K. Phaneendra*, Y. N. Reddy, Solution of Singularly Perturbed Differential-Difference equations with mixed shifts using Galerkin method with exponential fitting, Chinese Journal of Mathematics, Vol. 2016, Article ID 1935853, 10 pages, http://dx.doi.org/10.1155/2016/1935853 SCOPUS Indexed

30

K. Phaneendra, G. Mahesh, Uniformly Convergent Second Order Completely Fitted Finite Difference Scheme for Two-Parameters Singularly Perturbed Two Point Boundary Value Problem, Journal de Afrikana, 2016, 3(4); 233-251.

31

K. Phaneendra, E. Siva Prasad, Non standard fitted finite difference method for singular perturbation problems using cubic spline, Global and Stochastic Analysis, Vol. 4 (1), 1- 10, 2017. SCOPUS Indexed

32

K. Phaneendra, G. Mahesh, Solution of two parameter singular perturbation problem using higher order compact numerical method, Global and Stochastic Analysis, Vol. 4 (2), 225-236, 2017. SCOPUS Indexed

33

K. Phaneendra, Variable Mesh Non Polynomial Spline Method for Singular Perturbation Problems Exhibiting Twin Boundary Layers, WSEAS TRANSACTIONS on COMPUTER RESEARCH, Volume 5, 2017, 124-129.

34

Diddi Kumara Swamy, Kolloju Phaneendra∗, Y.N. Reddy, Accurate numerical method for singularly perturbed differential-difference equations with mixed shifts, Khayyam J. Math. 4, No. 2, 110-122, 2018. SCOPUS Indexed

35

Kolloju Phaneendra, Emineni Siva Prasad and Diddi Kumara Swamy, Fourth-order method for singularly perturbed singular boundary value problems using nonpolynomial spline, Maejo Int. J. Sci. Technol. 2018, 12(01), 1-10. Science Citation Index Expanded. Impact factor: 0.636

36

Lakshmi Sirisha, K. Phaneendra*, Y.N. Reddy, Mixed finite difference method for singularly perturbed differential difference equations with mixed shifts via domain decomposition, Ain Shams Engineering Journal (2018) 9(4), 647–654. ELSEVIER, Science Citation Index Expanded. Impact factor: 3.180

37

Alavalapati Goutham Reddy, Devanapalli Suresh, Kolloju Phaneendra, Ji Sun Shin, Vanga Odelu, Provably secure pseudo-identity based device authentication for smart cities environment, Sustainable Cities and Society, Vol. 41, 2018, Pages 878-885, ELSEVIER, Science Citation Index Expanded. Impact factor: 11.7

38

K. Phaneendra, M. Lalu, Gaussian Quadrature for Two-Point Singularly Perturbed Boundary Value Problems with Exponential Fitting, Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 447–467, 2019. Web of Science Indexed

39

K. Phaneendra, G. Mahesh, Fourth order computational method for two parameters singularly perturbed boundary value problem using non-polynomial cubic spline, Int. J. Computing Science and Mathematics, Vol. 10, No. 3, 261 – 275, 2019. SCOPUS indexed

40

K Phaneendra, Siva Prasad Emineni, Variable mesh non polynomial spline method for singular perturbation problems exhibiting twin layers, J. Phys.: Conf. Ser. 1344 012011, 2019. SCOPUS indexed

41

K. Phaneendra, M. Lalu, Numerical solution of singularly perturbed delay differential equations using Gaussian quadrature method, J. Phys.: Conf. Ser. 1344 012013, 2019. SCOPUS indexed

42

S. Rakmaiah, K. Phaneendra*, Numerical Solution of Singularly Perturbed Boundary Value Problems with Twin Boundary Layers using Exponential Fitted Scheme, Communications in Mathematics and Applications, 10(4), 797–807, 2019 . Web of Science Indexed

43

G. Sangeetha, G. Mahesh, K. Phaneendra*, Numerical Approach for DifferentialDifference Equations with Layer Behaviour, Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 851–863, 2019 . Web of Science Indexed

44

M. Adilaxmi, D. Bhargavi, K. Phaneendra*, Numerical Solution of Singularly Perturbed Differential-Difference Equations using Multiple Fitting Factors, Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 681–691, 2019. Web of Science Indexed

45

M. Adilaxmi, D. Bhargavi, K. Phaneendra*, Numerical Integration of Singularly Perturbed Differential-Difference Problem Using Non-Polynomial Interpolating Function, Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 195– 208, 2019. Peer reviewed journal.

46

. K. Phaneendra, V. Ganesh, A variable mesh finite difference scheme for two-parameters singularly perturbed boundary value problems, Journal of Mathematical Control Science and Applications Vol. 6 No. 1, 1-12, 2020. SCOPUS indexed

47

V. Ganesh, K. Phaneendra*, Computational technique for two parameter singularly perturbed parabolic convection-diffusion problem, J. Math. Comput. Sci. 10 (2020), No. 4, 1251-1261. SCOPUS indexed

48

G. Sangeetha, P. Thirupathi, K. Phaneendra*, Non-standard fitted operator scheme for singularly perturbed boundary value problem, J. Math. Comput. Sci. 10 (2020), No. 4, 793-804 . SCOPUS indexed

49

K. Mamatha, K. Phaneendra*, Solution of convection-diffusion problems using fourth order adaptive cubic spline method, J. Math. Comput. Sci. 10 (2020), No. 4, 817-832. SCOPUS indexed

50

Ch. Lakshmi Sirisha, K. Phaneendra*, Y.N. Reddy, Computational results of differential difference equations with mixed shifts having layer structure using cubic nonpolynomial spline, J. Math. Comput. Sci. 10 (2020), No. 4, 1309-1326. SCOPUS indexed

51

G. Sangeetha, G. Mahesh, K. Phaneendra*, Fitted difference approach for differential equations with delay and advanced parameters, J. Math. Comput. Sci. 10 (2020), No. 3, 479-496. SCOPUS indexed

52

M. Lalu, K. Phaneendra*, E. Siva Prasad, Numerical approach for differentialdifference equations having layer behaviour with small or large delay using nonpolynomial spline, Soft Computing, 25(21), 13709–13722, 2021. https://doi.org/10.1007/s00500-021-06032-5, SPRINGER, Science Citation Index Expanded. Impact factor: 4.1

53

K. Phaneendra, E. Siva Prasad, Solution of Singularly Perturbed Boundary Value Problems with Singularity Using Variable Mesh Finite Difference Method, Journal of Dynamical Systems and Geometric Theories, 19:1, 113-124, 2021. Taylor & Francis, Web of Science indexed.

54

M. Lalu, K. Phaneendra*, Quadrature method with exponential fitting for delay differential equations having Layer behaviour, Journal of Mathematics and Computer Science, 25 (2022), 191-208. Scopus & Web of Science indexed.

55

M. Lalu, K. Phaneendra*, A Numerical Approach for Singularly Perturbed Nonlinear Delay Differential Equations Using a Trigonometric Spline, Computational and Mathematical Methods Volume 2022, Article ID 8338661, 10 pages https://doi.org/10.1155/2022/8338661. Wiley publications, Scopus and Web of Science indexed.

56

E. Srinivas, M. Lalu, K. Phaneendra*, A Numerical Approach for Singular Perturbation Problems with an Interior Layer using an Adaptive Spline, DOI:10.22067/IJNAO.2021.73813.1076 Iranian Journal of Numerical Analysis and Optimization, Vol. 12, No. 2, pp 355–370, 2022, Scopus indexed.

57

Kodipaka Mamatha, Emineni Siva Prasad, Kolloju Phaneendra*, Difference Scheme for Differential-Difference Problems with Small Shifts arising in Computational Model of Neuronal Variability, International Journal of Applied Mechanics and Engineering, 2022, vol.27, No.1, pp.91-106, Scopus indexed

58

E. Siva Prasad, R. Omkar, and Kolloju Phaneendra*, Fitted Parameter Exponential Spline Method for Singularly Perturbed Delay Differential Equations with a Large Delay, Computational and Mathematical Methods Volume 2022, Article ID 9291834, 11 pages https://doi.org/10.1155/2022/9291834, 2022, Wiley publications, Scopus and Web of Science indexed.

59

Amala Pandi, Lalu Mudavath, K Phaneendra*, Computational Approach to solve a Layered Behaviour Differential Equation with Large Delay using Quadrature Scheme, Int. J. of Applied Mechanics and Engineering, 2022, vol.27, No.4, pp.117-137 DOI: 10.2478/ijame-2022-0054. Scopus indexed.

60

Ramavath Omkar, K Phaneendra*, Numerical Simulation of Singularly Perturbed Delay Differential Equations With Large Delay Using an Exponential Spline, Int. J. Anal. Appl. (2022), 20:63. https://doi.org/10.28924/2291-8639-20-2022-63. Scopus indexed.

61

Soujanya GBSL, Kumar Ragula, K Phaneendra*, A difference scheme using a parametric spline for differential difference equation with twin layers, Int. J. Nonlinear Anal. Appl. Vol.14 (1), 2469-2479,2023,http://dx.doi.org/10.22075/ijnaa.2022.28237.3841. WOS Indexed

62

Srinivas Erla and Phaneendra Kolloju, Computational scheme for a differentialdifference equation with a large delay in convection term, Int. J. of Applied Mechanics and Engineering, 2023, vol.28, No.2, pp.34-48, DOI: 10.59441/ijame/168327. SCOPUS Indexed

63

P. Amala, M. Lalu, K. Phaneendra, Numerical Simulation for a Differential Difference Equation With an Interior Layer, Communications in Mathematics and Applications,14(1),189–202, 2023,10.26713/cma.v14i1.2047. WOS Indexed

64

R. Omkar, M. Lalu, K. Phaneendra, Numerical solution of differential – difference equations having an interior layer using nonstandard finite differences, Bulletin of the Karaganda University, Mathematics series. № 2(110)/2023, 104-11, DOI 10.31489/2023M2/104-115. SCOPUS Indexed

65

Suresh Devanapalli1 and Kolloju Phaneendra, Cryptanalysis On “Practical And Provably Secure Three-Factor Authentication Protocol Based On Extended ChaoticMaps For Mobile Lightweight Devices”, International Journal of Advances in Soft Computing and Intelligent Systems (IJASCIS) 2023, Vol 02, Issue 01, 14-26, Science Transactions © 2023

66

Suresh Devanapalli1 and Kolloju Phaneendra, Cryptanalysis on “An Improved RFIDbased Authentication Protocol for Rail Transit”, Communications in Computer and Information Science, Vol. 1737, 2023, 194–203. SCOPUS Indexed

67

Suresh Devanapalli1 and Kolloju Phaneendra, Security analysis of Three-Factor Authentication Protocol Based on Extended Chaotic-Maps, IEEE Xplore, OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), Raigarh, Chhattisgarh, India, 2023, pp. 1-6, doi: 10.1109/OTCON56053.2023.10113994.

68

Satyanarayana KAMBAMPATI, Siva Prasad EMINENI, Chenna Krishna REDDY M. and Phaneendra KOLLOJU*, Fourth order computational spline method for twoparameter singularly perturbed boundary value problem, Int. J. of Applied Mechanics and Engineering, 2023, vol.28, No.4, pp.79-93. DOI: 10.59441/ijame/176516. SCOPUS Indexed.

69

E. Srinivas, K. Phaneendra, A Novel Numerical Scheme for a Class of Singularly Perturbed Differential-Difference Equations with a Fixed Large Delay, Bulletin of the Karaganda University. Mathematics series, No. 1(113), 2024, pp. 194–207. https://doi.org/10.31489/2024M1/194-207. SCOPUS Indexed, WOS Indexed.

70

K. Satyanarayana, E. Siva Prasad, M. Chenna Krishna Reddy, K. Phaneendra∗, Computational approach for a two-parameter convection- diffusion problem using an adaptive spline, accepted for publication in Journal of the Indian Math. Soc. ISSN (Print): 0019–5839.